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Abstract

Cohen’s kappa coefficient, which was introduced in 1960, serves as the most widely employed 

coefficient to assess inter-observer agreement for categorical outcomes. However, the original 

kappa can only be applied to cross-sectional binary measurements and, therefore, cannot be 

applied in the practical situation when the observers evaluate the same subjects at repeated time 

intervals. This study summarizes six methods of assessing agreement of repeated binary outcomes 

under different assumptions and discusses under which condition we should use the most 

appropriate method in practice. These approaches are illustrated using data from the CDC anthrax 

vaccine adsorbed (AVA) human clinical trial comparing the agreement for two solicited adverse 

events after AVA between the 1–3 day in-clinic medical record and the patient’s diary on the same 

day. We hope this article can inspire researchers to choose the most appropriate method to assess 

agreement for their own study with longitudinal binary data.
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1 Introduction

In epidemiologic and medical science, many statistical approaches have been proposed for 

assessing agreement among different observers or measurement methods. For categorical 

measurements, Cohen’s kappa [1] and weighted kappa [2] are the most popular indices of 

agreement. For quantitative data, a very popular unscaled agreement index is the limits of 

agreement proposed by Bland and Altman [3]. More recently, the commonly used scaled 

agreement coefficients are the intraclass correlation coefficient (ICC) [4–7] and the 

concordance correlation coefficient (CCC) [8].

In many modern-day applications, data are often clustered, making inference difficult to 

perform. In addition, longitudinal studies where repeated observations are recorded for one 

subject by each observer at different time points have become increasingly more common. 

Our objective is to review and summarize the available methods that can be used to assess 

agreement of repeated binary outcomes. This study can serve a very useful tool whenever 

agreement needs to be assessed from repeated binary measurements under different 

scenarios. To illustrate the methods for obtaining agreement coefficients for repeated binary 

outcomes, we use data from the CDC anthrax vaccine adsorbed (AVA) human clinical trial 

[9], and we provide an overview of this in the following section. Details of each statistical 

method are presented in Section 3. Results of applying each of the statistical methods to data 
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for redness and tenderness at the site of vaccination from the CDC AVA human clinical trial 

are shown in Section 4. Summary and discussion follow in Section 5.

2 Motivating example

The CDC AVA human clinical trial was conducted during 2002–2005 with participants 

enrolled and followed at five major U.S. vaccine research centers [9]. This was a Phase 4, 

multicenter, randomized, placebo-controlled clinical trial to evaluate route change 

[subcutaneous (SQ) to intramuscular (IM)] and dose reduction (priming schedule of 0, 2, 4 

weeks and 6, 12, 18 months and an annual booster vs reduced priming schedule of 0, 4 

weeks and 6 months and a triennial booster). At each site, participants were randomly 

assigned to one of seven arms (TRT-8SQ, TRT-8IM, TRT-7IM, TRT-5IM, TRT-4IM, 

CNT-8IM, and CNT-8SQ) based on treatment (AVA vs saline placebo), route (SQ vs IM), 

and full/reduced AVA schedule (full = 0.5 mL doses at 0, 2, and 4 weeks, and 6, 12, 18, 30, 

and 42 months and reduced = substituting one/more placebo doses). Details of the clinical 

trial and the results of the interim analysis on data collected through the first four AVA doses 

for the first 1,005 participants were previously published [9].

Participants (n = 1,563) received a total of eight injections of AVA or saline placebo during 

43 months (Figure 1). Following each injection, participants were routinely monitored (a) 

using a self-reported adverse event diary for 14 days after each of the first two doses and for 

28 days after all subsequent doses and (b) by a study nurse during an in-clinic interview and 

exam at 15–60 min (not shown in Figure 1) and 1–3 days after all injections, 14 days after 

the first two injections, and 28 days after injections 3–8. Eight solicited injection-site 

adverse events (warmth, tenderness, itching, pain, arm motion limitation, redness, swelling, 

and bruise) were recorded both in the clinic record and separately by the individual 

participant in their diary. For our agreement methods’ comparison, we restricted the dataset 

to only participants from study site A (n = 299) and compared the agreement for two 

solicited adverse events, redness and tenderness, at the injection site, in the in-clinic record, 

and in the participant’s diary. We further limited our dataset to include only the record 

obtained at the participant’s in-clinic visit scheduled for 1–3 days following each 

vaccination, and we compared redness and tenderness indicated in the clinical record and in 

the participant’s diary on the exact same date. This time point was chosen to maximize the 

agreement of having redness and tenderness at the injection site recorded by both observers. 

We did not evaluate data from the early (15–60 min) in-clinic assessment, since the 

participants were instructed to use the diary to only record adverse events occurring later in 

the day after their in-clinic visit or the much later (14/28 days) in-clinic evaluations.

Table 1 presents an example of the data layout of redness. The redness and tenderness 

measurements of one subject were from both diary and in-clinic measurements after each of 

the 8 injections, consisting of 16 observations. In addition, important covariates such as 

treatment arm, age, and gender are also included.
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3 Methods

The following agreement approaches were considered: (1) modeling the observed agreement 

with generalized estimating equation (GEE) by Coughlin et al. [10]; (2) extended kappa 

statistic with two-stage logistic regression by Lipsitz et al. [11]; (3) extended kappa statistic 

based on U-statistics by Ma et al. [12]; (4) ICC on repeated measurements by Carrasco et al. 

[13]; (5) CCC on repeated measurements with U-statistics by King et al. [14]; and (6) 

weighted CCC on repeated measurements with variance components by Carrasco et al. [13].

In the following discussion of methods, the common notation is applied. Let yijt denote the 

binary readings from the ith subject, jth observer at time point t, where i = 1,…, n, denoting 

the subject index; j = 1, 2, standing for the two observers and t = 1,…, T. For example, if yi1t 

= yi2t, then the new defined dependent variable zit = 1 at time point t. Otherwise zit = 0. 

Define P(zit = 1)= pit. In addition, some baseline covariates X1, X2, … XM were also 

included in some methods.

3.1 Logistic regression modeling of the agreement proportion

Coughlin et al. [10] introduced logistic modeling of inter-observer agreement. The 

dependent variable is defined to be 1, if the two raters agree and 0 otherwise. Based on the 

notations, the logistic regression to estimate the percent agreement, adjusting for covariates 

in order to obtain adjusted or subgroup-specific estimates of percent agreement can be 

expressed as follows:

log it(pit) = β0 + β1X1 + β2X2 + β3X3 + ⋯ + βMXM,

where β0 is the intercept, β1 is the coefficient of covariate X1 and so on. GEE with 

unstructured correlation was applied to estimate model-based percent agreement.

If each of N subjects is assigned independently by two raters to one of the I categories, then 

the cell frequencies (niit) along the main diagonal of the two-way contingency table 

represent the agreement between the raters, at time point t. The crude agreement is estimated 

as follows:

p0t = 1
N ∑

i = 1

I
niit .

By applying this logistic regression approach, the proportion of agreement for particular 

subgroups can be estimated. Suppose there are M explanatory variables (X1, X2, …, XM), 

then the model-based agreement is

E(p0t ∣ X1, X2, …, XM) = 1
1 + exp − β0 + ∑m = 1

M βmXm
.

The variance of the logit of the proportion agreement can be estimated using the sandwich 

estimator [15–17], and inference is carried out using standard normal approaches.
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3.2 Extended Kappa statistic based on two-stage logistic regression

Although the estimation of the agreement proportion and its interpretation [10] is 

straightforward, two observers can simply agree by chance [11]. Lipsitz et al. [11] proposed 

two-stage logistic regression to estimate kappa, and this can also be applied to repeated 

binary measurements. Kappa was introduced by Cohen [1] to assess the agreement of two 

methods/observers having binary readings, and it is defined as κ =
π0 − πe
1 − πe

, estimated by 

κ =
p0 − pe
1 − pe

 where π0 denotes the observed agreement and πe denotes the agreement 

expected by chance, which is also the agreement under independence.

Let P(Yi1t = 1)= pi1t which denotes the probability of the first rater having the measurements 

as “1”. Similarly, P(Yi2t = 1)= pi2t and pi1t, pi2t are the corresponding estimates based on the 

following logistic regressions.

log it(pi1t) = β01 + β11X1 + β12X2 + ⋯ + β1MXM, where β01 is the intercept and β11 is the 

coefficient of variable time, which is denoted by X1 and similarly, log it(pi2t) = β02 + β21X1 

+ β22X2 + ⋯ + β2MXM. In summary, there are two steps that are considered to assess the 

agreement between two observers:

1. Use the standard logistic regression to obtain pi1t and pi2t.

2. Form the estimated offset, ηit = log it[(pi1tpi2t + (1 − pi1t)(1 − pi2t)].

Finally, the model is log it(pit) = ηit + β0 + β1X1 + β2X2 + ⋯ + βMXM, where ηit is the pre-

specified offset, β0 is the intercept, β1 is the coefficient of X1, β2 is the coefficient of X2 and 

so on. A summary measure of how agreement differs from chance agreement, for any given 

covariate pattern is included by the estimated linear predictor, πeit = log it(pit) − ηit. Lipsitz 

et al. [11] showed that the estimate of the kappa coefficient is

k it =
pit − e

ηit ∕ [1 + e
ηit]

1 − e
ηit ∕ [1 + e

ηit]
=

pit − [pi, rater = 1, tpi, rater = 2, t + (1 − pi, rater = 1, t)(1 − pi, rater = 2, t)]
1 − [pi, rater = 1, tpi, rater = 2, t + (1 − pi, rater = 2, t)(1 − pi, rater = 2, t)]

.

Although the jackknife estimator was originally proposed for this method, in our study we 

applied the bootstrap standard error approach. GEE with unstructured correlation was also 

used. To ensure the results in the two stages were consistent, any data point with only one 

observation in the in-clinic record or in the diary was not included. And we only adjusted for 

time in all the models fitted under this approach.

3.3 Extended Kappa statistic based on U-statistics

Ma et al. [12] introduced a new class of kappa coefficients based on U-statistics to tackle the 

complexities involved in addressing missing data and other related issues arising from a 

multirater scenario and repeated categorical measurements. For illustration purposes, we 

only consider a longitudinal study with n subjects, j raters, t assessments, and a binary 

outcome g. The addition of index g is to create a dummy variable of each Yijt. For example, 
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if yijt = 1, then yijt1 = 1 (g = 1) and yijt0 = 0 (g = 0). On the other hand, if yijt = 0, then yijt1 = 

0 (g = 1) and yijt0 = 1 (g = 0). The motivation of such a notation is to accommodate the 

missing data structure. The estimate of kappa at time t is given by the ratio of two U-

statistics:

κt =
∑

(i, u) ∈ C2
n

1
2 ∑k = 0

1 ∑g = 0
1 (yi1tk − yu1tk)(yi2tg − yu2tg)

∑
(i, u) ∈ C2

n{1 − 1
2 ∑k = 0

1 ∑g = 0
1 (yi1tkyu2tg + yu1tkyi2tg)}

, t = 1, 2, …, T , (1)

where i and u are two subjects belonging to C2
n = {(i, u); 1 ≤ i < u ≤ N}.

By the theory of U-statistics and the delta method, the proposed estimate of kappa is proved 

to be consistent and asymptotically normal. Further, the U-statistics based estimate in eq. [1] 

can be modified to account for missing data:

κt =
∑

(i, u) ∈ C2
n

ri1tru1tri2tru2t
2ΔitΔut

∑k = 0
1 ∑g = 0

1 (yi1tk − yu1tk)(yi2tg − yu2tg)

∑
(i, u) ∈ C2

n
ri1tru1tri2tru2t

ΔitΔut
{1 − 1

2 ∑k = 0
1 ∑g = 0

1 (yi1tkyu2tg + yu1tkyi2tg)}
, t = 1, 2, …,

T ,

(2)

where rijt = 1 if the jth rater’s rating on the ith subject is observed at the tth assessment and 

rijt = 0 if the rating is missing, and Δit represents the probability of missing data. This 

estimate is designed for modeling kappa under two missing data patterns – missing 

completely at random (MCAR) and missing at random (MAR). MCAR means that the 

missing data are independent of both the observed and the unobserved variables. On the 

other hand, MAR means that given the observed data, missingness does not depend on the 

unobserved data.

By the theory of multivariate U-statistics, the joint distribution of the kappas assessed at 

multiple time points is readily derived. Inferences for longitudinal kappas can be further 

developed based on their joint distribution. For example, one of the research interests in 

practice is to identify the trend in agreement over time. In particular, a test of equal 

agreements (i.e. κ1 = κ2 = ⋯ = κT) is proposed in this method.

When applying this method to our illustrative dataset, we made the following assumptions as 

the major missing data pattern in our study: (1) if the measurement was missing in the in-
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clinic record, then it was also missing for the participant’s diary (missing simultaneously); 

(2) if the record of injection-site redness was missing at one vaccine dose, then it was also 

missing for all the participant’s later doses, representing a monotone missing data pattern 

(MMDP). In fact in our study, all missingness occurred in both in-clinic and diary records 

simultaneously and 90% of the missing observations followed MMDP. Missing in-clinic 

record and diary observations were due to a participant’s missed in-clinic visit and 

participant’s negligence, respectively. Furthermore, the occurrence of missing data in our 

study did not relate to either prior or future observations. Therefore, we observed a MCAR 

missing pattern in our study, by which Δit in eq. [2] is constant and can be estimated by the 

sample proportion 
∑i = 1

n ri1tri2t
n .

3.4 ICC for binary repeated measurements

Historically, agreement between quantitative measurements has been evaluated via the ICC. 

Numerous versions of ICCs [4–7, 18–20] have been proposed in many areas of research by 

assuming different underlying analysis of variance (ANOVA) models for the situation where 

none of the observers is treated as the reference. The simplest ICC is defined in the 

following ANOVA model:

Yijt = μ + αi + εij with assumptions: αi~N(0, δα
2); εi j~N(0, δε

2) and εij is independent of αi, 

where i = 1, … , n, denoting the subject index; j = 1, …, ki, standing for the observer index. 

Then, ICC =
δα
2

δα
2 + δε

2  and its estimate is IC
⌢

C =
MSα − MSε

MSα + (K − 1)MSε
, where MSα and MSε are the 

mean sums of squares from the one-way ANOVA model for between and within subjects, 

respectively. This method has been extended to binary data just coding Yijt as 0 or 1 [21]. 

For binary measurement,

I C
⌢

Cbinary =
MSα − MSε

MSα + (n0 − 1)MSε
, where n0 = 1

(n − 1) K − ∑
i = 1

n ki
2

K with K = ∑
i = 1

n
ki .

Besides this ANOVA estimator, Ridout et al. [21] also introduced other estimation methods 

of ICC for binary observations such as the moment estimators, the quasi-likelihood and 

pseudo-likelihood estimators and the maximum likelihood estimator for beta-binomial data. 

Furthermore, Carrasco et al. [13] extended ICCs to repeated measurements. Consider the 

following linear mixed model:

Y i jt = μ + αi + β j + γt + αβi j + αγit + βγ jt + ei jt, (3)

where μ is the overall mean, αi is the random subject effect (i = 1, …, n) assumed to be 

distributed as αi~N(0, σα
2), βj is the fixed observer effect (j = 1, …, k), γt is the fixed time 

effect (t = 1, … , p), αβij is the random subject–observer interaction effect assumed to be 
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distributed as αβi j~N(0, σαβ
2 ), αγit is the random subject–time interaction effect assumed to 

be distributed as αγi j~N(0, σαγ
2 ), βγjt is the fixed observer–time interaction effect, and eijt is 

the random error effect assumed to be distributed as ei~MVN(0, σe
2R) when ei is the vector of 

residuals of each subject. All the effects of the model are assumed to be independent. This 

ANOVA model is a special case of linear mixed models. Thus, the appropriate expression of 

the ICC for measuring agreement between observers is

ICC2 =
σα

2 + σαγ
2

σα
2 + σαγ

2 + σαβ
2 + σβγ

2 + σe
2 . (4)

ICC2 is estimated by replacing the variance components in eq. [4] by their corresponding 

estimates obtained using restricted maximum likelihood (REML) estimation.

3.5 CCC based on U-statistics

The CCC is commonly used for assessing agreement for continuous outcomes. It was first 

published by Lin [8] for the simplest case where each of two raters makes one reading per 

subject. Lin’s CCC is defined as follows: assume that the observations are from a bivariate 

distribution with mean vector (μ1, μ2) and variance covariance matrix 
σ1

2 ρσ1σ2

ρσ1σ2 σ2
2 , the 

Lin’s CCC between two observers Y1 and Y2 is proposed as

CCC = 1 −
E(Y2 − Y1)2

E[(Y2 − Y1)2 ∣ ρ = 0]
=

2ρσ1σ2
σ1

2 + σ2
2 + (μ1 − μ2)2 , (5)

where ρ is the Pearson correlation coefficient between two observers. King et al. [14] 

introduced a generalized CCC for both continuous and categorical data. Furthermore, King 

et al. [22, 23] reported the extension of CCC to repeated measurements, mainly with 

repeated continuous data.

Let the elements of the vector Y1 (yi1t) represent the tth repeated measure on the ith subject 

for the repeated measurements on the first observer. Let the elements of the vector Y2 (yi2t) 

represent the tth repeated measure on the ith subject for measurements on the second 

observer. Assume that the elements of the vector [Y1, Y2] are selected from a multivariate 

normal population with 2T × 1 mean vector [μY1, μY2], and 2T × 2T covariance matrix ∑, 

which consists of the following four T × T matrices: ∑Y1Y1, ∑Y2Y2, ∑Y1Y2, and ∑Y2Y1.

Extending from the derivation of Lin’s CCC shown in eq. [5], we can then construct a 

repeated measures CCC as
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CCCrm = 1 −
E[(Y1 − Y2)′D(Y1 − Y2)]
EI[(Y1 − Y2)′D(Y1 − Y2)] =

trace(D∑Y1Y2
+ D∑Y2Y1

)
trace(D∑Y1Y1

+ D∑Y2Y2
+ (μY1

− μY2
)′D(μY1

− μY2
)

=
∑t = 1

T ∑s = 1
T dts(σY1tY2s

+ σY2tY1s
)

∑t = 1
T ∑s = 1

T dts(σY1tY1s
+ σY2tY2s

) + ∑t = 1
T ∑s = 1

T dts(μY1t
− μY2s

)(μY1t
− μY2s

)
,

(6)

where D is a T × T non-negative definite matrix of weights between the different repeated 

measurements; both t and s index two sample moments between and within the measures 

being evaluated for agreement, i.e. when both t and s index the T repeated visits in a 

longitudinal study, t = s represents the within-visit agreement, and t ≠ s represents the 

between-visit agreement between the two measures of interest. When T = 1, the repeated 

measures CCC reduces to Lin’s simple concordance coefficient in eq. [5].

Following the extension in King et al. [22], eq. [6] has been extended to repeated categorical 

outcomes as:

CCCrm = 1 −
∑t = 1

T ∑s = 1
T dtsPr(Y1t ≠ Y2t, Y1s ≠ Y2s)

∑t = 1
T ∑s = 1

T dtsPr I(Y1t ≠ Y2t, Y1s ≠ Y2s)
.

Furthermore, in King et al. [22, 23], four options of D were proposed. In our study, we 

considered the following two options for D:

1. Weight 1: D = (dts), where dts is the non-missing proportions when t = s and dts = 

0 when t ≠ s.

2. Weight 2: D = (dts), where dts = T − t + 1 when t = s and dts = 0 when t ≠ s.

In the first set of weights, we used the actual non-missing proportion to give more weights to 

the time points with lower missing proportions. It is reasonable to assign more weight to the 

time point with more information. While the second set of weights gave us more weight to 

the earlier time points. The data from the first measurements are possibly more reliable, 

since there are more data. Therefore, more weight was assigned to the earlier time points in 

the second weight. A basic consideration for statistical inference concerning CCCrm is to 

recognize that the estimator CCCrm can be expressed as a ratio of functions of U-statistics. 

CCC based on U-statistics is not applicable when missing data occur. In our study, if any 

observation for a participant was missing, then we excluded all that participant’s data.

Pan et al. Page 9

Int J Biostat. Author manuscript; available in PMC 2019 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.6 Weighted CCC based on variance components

Carrasco et al. [13] proposed a CCC for repeated binary measurements through the 

appropriate specification of the ICC from a variance components linear mixed model. 

Combining the notations in Sections 3.4 and 3.5, CCCrm = 1 −
E[(Y1 − Y2)′D(Y1 − Y2)]
E1[(Y1 − Y2)′D(Y1 − Y2)] , where 

D is an identity matrix, the expression of CCC under model (1) can be reduced to 

(σα
2 + σαγ

2 )∑ j = 1
T dtt

(σα
2 + σαγ

2 + σαβ
2 + σe

2)∑ j = 1
T dtt + 1

2 ∑t = 1
T dtt(μ1t − μ2t)

2 . In particular, the case of D as an identity 

matrix where dtt = 1 if t = s and 0 otherwise, then ∑ dts = T and the CCC becomes 

CCCrm =
σα

2 + σαγ
2

σα
2 + σαγ

2 + σαβ
2 + σβγ

2 + σe
2 = ICC2 as shown in eq. [4]. Besides the two weights, 

compound symmetry (CS) and first-order auto correlation (AR(1)) structures were 

considered with the CCC variance components method.

4 Results

Of the total trial’s enrollment, 299 participants were enrolled at study site A. The mean age 

of these participants was 42.2 years with standard deviation 10.1 years. Fifty-one percent 

(155/299) of participants were female. Participants by treatment arms were 48 (16.1%) in 8 

IM; 50 (16.7%) in 7 IM; 51 (17.1%) in 5 IM; 52 (17.4%) in 4 IM; 24 (8.0%) in the 8 IM 

placebo arm, and the remaining 24 (8.0%) in the 8 SQ placebo arm.

Tables 2 and 3 present the result of modeling agreement proportions of redness and 

tenderness on the 299 participants enrolled at study center A. A univariate model with only 

time effect and a multivariate model with age, gender, treatment arm, and time effect were 

considered. In both models, all data at each time point were fitted using a single model. In 

the univariate model, only time effect was included with GEE and unstructured correlation. 

The significance of the time effect indicated that agreement proportions changed 

significantly across visits (p = 0.003 for redness and p = 0.005 for tenderness). In the 

multivariable model for redness, age (p = 0.02), visit time (p = 0.002), and treatment arm (p 
< 0.0001) were found to be significantly associated with agreement and for tenderness, only 

visit time (p = 0.005) and arm (p < 0.0001) were significant. Both univariate and 

multivariable models showed high agreement proportions. After adjusting for age, gender, 

and treatment arm, the overall agreement proportions were almost all above 90% for redness 

and above 85% for tenderness. However, two observers can simply agree with each other by 

chance. The observed agreement proportion does not tell us the complete story. Therefore, 

we used the modified kappa statistic which takes chance agreement into account. Extended 

kappa coefficients based on two-stage logistic regression models and U-statistics are 

presented in Tables 4 and 5, respectively. For redness, kappa statistic based on two-stage 

logistic regression was 0.719 with 95% CI (0.597, 0.833) at AVA dose 1, while it was 0.630 

with 95% CI (0.522, 0.738) at the AVA dose 8. Kappa coefficient based on U-statistics gave 

us similar results. Starting with a value of 0.720 with 95% CI (0.591, 0.849) at AVA dose 1 

kappa decreased to 0.646 with 95% CI (0.521, 0.771) at AVA dose 8. Kappa statistics were 

not significantly different across time (p = 0.8) for redness. A kappa value ranging from 0.2 
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to 0.4 indicates fair agreement, 0.4 to 0.6 means moderate agreement, 0.6 to 0.8 means good 

agreement, and greater than 0.8 means excellent agreement [24]. Therefore, good agreement 

was achieved when comparing the records of injectionsite redness from both patients’ 

diaries and their in-clinic records. On the other hand, the kappa coefficients of tenderness 

ranged from 0.523 to 0.667 based on the two-stage logistic regression (Table 5). Kappa 

based on U-statistic gave us comparable results except for the seventh time point where U-

statistic gave us 0.627, and kappa based on two-stage logistic regression was 0.584. Kappa 

statistics were not significantly different across time (p = 0.7) for tenderness.

Table 6 combines the results of ICC with CS and AR(1) correlation structures, CCC based 

on U-statistics with two weights and CCC based on variance components with CS and 

AR(1) correlations and two weights specified in Section 3.5. Here, weight 1 based on non-

missing proportions is (0.98, 0.95, 0.95, 0.91, 0.90, 0.89, 0.82, 0.77) and weight 2 is simply 

(8, 7, 6, 5, 4, 3, 2, 1). Overall agreement across eight doses is presented for each method, 

and CCC based on U-statistics with weight 2 gave us the highest estimate 0.7090 with 95% 

CI (0.6614, 0.7510) for redness. Furthermore, more discrepancy was observed for tenderness 

applying different methods and weighting schemes. ICC and CCC based on variance 

components with weight 2 gave us almost identical results. However, CCC based on 

variance components applying weight 1 gave us much higher agreement of tenderness 

between in-clinic interview and patients’ diaries. For example, CCC_VC with AR(1) was 

0.6861 with weight 1 and 0.5943 with weight 2. CCC based on U-statistic gave us 

comparable results no matter which weight we choose from (Table 7).

5 Discussion

In this study, six approaches for measuring agreement on repeated binary outcomes were 

reviewed and applied to our illustrative dataset. In general, it is apparent that those methods 

should be applied under different situations. In Table 8, we list the details, main 

characteristics of each method and when we recommend using each of them. Generally 

speaking, those six approaches can be classified into the following categories by their model 

assumptions: (1) full parametric model which is based on linear mixed models and is 

estimated via maximum likelihood paradigm, such as ICC and Weighted CCC based on 

variance components; (2) semi-parametric model which is based on GEE, such as logistic 

regression modeling of the agreement proportion and extended kappa statistic based on two-

stage logistic regression; and (3) nonparametric model, which is based on U-statistic, such as 

extended kappa and CCC based on U-statistic. The sample programs can be found under 

http://web1.sph.emory.edu/observeragreement/ and requested from the authors.

In practice, estimating the agreement proportion has been widely used in medical research 

[25–27]. Besides the unstructured correlation, other correlation structures such as AR(1) and 

CS can also be considered. Furthermore, important covariates that may affect agreement 

proportions can be included in the logistic modeling. However, this method does not 

overcome potential limitations of general observations of agreement such as the tendency for 

percent agreement to be high whenever the frequency of a particular diagnostic category is 

very low or very high. Therefore, estimates of kappa, which take chance agreement into 

account, may be preferable to the agreement proportion method.
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The two extended kappa-based methods serve as good alternatives to modeling only the 

agreement proportion. In Lipsitz’s logistic regression model for chance-corrected agreement, 

the offset term ensures that agreement due to chance is properly accounted for when 

attempting to identify covariates that are predictive of agreement. In this method, any data 

point with only an observation in the in-clinic record or in the diary was not included. 

Although results adjusting for covariates are not presented, covariates may also potentially 

be included in the two-stage logistics model. Besides the GEE method, which 

accommodates for the correlations among different time points for the same subjects, 

random effects models can be applied. On the other hand, Ma et al. [12] developed an 

approach to address missing data when modeling multiobserver kappa within a longitudinal 

study setting. In particular, they extended MMDP assumption for longitudinal data analysis 

involving a single response to a bivariate setting and integrated the inverse probability 

weighting approach with the theory of U-statistics. The missingness in “redness” follows 

MMDP and MCAR. Comparing those two extended kappa coefficients, model-based 

estimation requires more assumptions to correctly specify the model while the U-statistics 

approach is nonparametric.

CCC based on U-statistics can be applied as an extension of Lin’s CCC to responses 

measured repeatedly over time, or clustered by some other design. This method can handle 

any number of repeated measurements, and the variance can be estimated in a 

straightforward manner by U-statistics methodology. Furthermore, the CCC based on U-

statistics is not applicable, when any missing data appear and when the design is 

unbalanced. It indicated that if there was one missing data point in any method at any time 

point, the whole subject will be removed from the dataset. On the other hand, ICC and CCC 

based on variance components approaches were built up with the random effects model 

described in eq. [3]. By eq. [4], ICC can be considered as a special case (un-weighted 

version) of the weighted CCC when the D is an identity matrix. In addition, we found that 

the standard error is substantially higher for both CCC_U methods than for ICC and 

CCC_VC approaches. It may be possible that ICC and CCC_VC underestimate the SE, so 

that a smaller SE means worse performance in this case. This finding is consistent with 

Carrasco et al. [28]. So, perhaps the VC approach, or more properly the maximum 

likelihood approach, gives smaller SE, but this does not always mean “better performance”. 

Furthermore, the ICC and CCC_VC can accommodate multiple raters and possible 

covariates in the model.

As explained in Section 3.4, one of the approaches Ridout et al. [21] evaluated ICC based on 

the linear mixed model (ANOVA) with the binary data coded as 0 and 1. In another more 

recent article on agreement, Zou and Donner [29] estimated ICC for binary data in the same 

way. Actually, it is not uncommon to use a linear mixed model to estimate variance 

components for binary data. In estimating those variance components, the categorical or 

binary nature of the response is usually ignored, and the analysis is carried out using 

ANOVA or mixed models. The rule-of-thumb generally applied is that the ANOVA is 

reasonably accurate, as long as the proportions in each of the categories of the response are 

not extreme. The variance components approach in Carrasco et al. [13] is similar to that of 

these articles, because the fixed effects and variance components are estimated from the 
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linear mixed model by restricted maximum likelihood (REML) which gives the same 

estimates than ANOVA in case of balanced design.

In summary, all six statistical methods give us comparable estimates, indicating good 

agreement for assessing the record of redness and moderate to good agreement on 

tenderness between participants’ diaries and their in-clinic record. However, each approach 

has its own pros and cons under different situations. This article provides several alternatives 

for assessing the agreement with longitudinal binary data. We hope this article can inspire 

researchers to choose the most appropriate method to assess agreement for their own study.
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Figure 1. 
Timeline of data collection of participants’ diary and in-clinic evaluation.
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Table 1

Data layout of repeated measures of redness in diary and clinic visits.

Study ID Redness Source Injection Treatment arm Age Gender

1 0 Diary 1 TRT-8IM 45 F

1 1 Diary 2 TRT-8IM 45 F

1 0 Diary – TRT-8IM 45 F

1 0 Diary 8 TRT-8IM 45 F

1 0 Clinic 1 TRT-8IM 45 F

1 1 Clinic 2 TRT-8IM 45 F

1 0 Clinic – TRT-8IM 45 F

1 0 Clinic 8 TRT-8IM 45 F

2 1 Diary 1 CNT-8SQ 37 M

2 1 Diary 2 CNT-8SQ 37 M

2 1 Diary – CNT-8SQ 37 M

2 0 Diary 8 CNT-8SQ 37 M

2 0 Clinic 1 CNT-8SQ 37 M

2 1 Clinic 2 CNT-8SQ 37 M

2 1 Clinic – CNT-8SQ 37 M

2 0 Clinic 8 CNT-8SQ 37 M
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Table 2

Estimating agreement proportions of redness

Injection Univariate model Multivariable model

Estimate (%) Lower (%) Upper (%) Estimate (%) Lower (%) Upper (%)

1 94.5 91.3 96.6 96.1 93.4 97.7

2 94.4 91.0 96.5 96.0 93.0 97.7

3 93.0 89.3 95.4 95.0 91.7 97.0

4 88.4 84.0 91.7 91.3 87.5 94.0

5 91.1 87.1 94.0 93.4 90.1 95.6

6 86.2 81.5 89.8 89.5 85.2 92.6

7 89.8 85.4 93.0 92.4 88.3 95.1

8 87.2 82.3 90.9 90.2 85.6 93.4

Notes: In the univariate model, time effect was significant, p = 0.003; In the multivariate model, age, gender, and arm were adjusted besides time. p 
values for time = 0.002, age = 0.02, gender = 0.3, and arm < 0.0001.
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Table 3

Estimating agreement proportions of tenderness.

Injection Univariate model Multivariable model

Estimate (%) Lower (%) Upper (%) Estimate (%) Lower (%) Upper (%)

1 79.8 74.9 84.0 86.4 81.7 90.0

2 88.3 84.0 91.5 92.6 89.1 95.0

3 78.1 72.9 82.5 85.1 80.3 88.9

4 79.9 74.7 84.2 86.5 82.0 90.1

5 86.9 82.4 90.4 91.6 88.1 94.2

6 83.6 78.6 87.6 89.3 85.1 92.4

7 84.9 79.9 88.8 90.3 85.9 93.4

8 78.0 72.3 82.8 85.1 80.0 89.1

Notes: In the univariate model, time effect was significant, p = 0.005; In the multivariate model, age, gender, and arm were adjusted besides time. p 
values for time = 0.005 and arm < 0.0001.
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Table 4

Extended kappa statistics assessing agreement for redness.

Injection Two-stage logistic U-statistic
*

Kappa SE 95% CI Kappa SE 95% CI

1 0.719 0.065 0.597 0.833 0.720 0.066 0.591 0.849

2 0.752 0.055 0.632 0.834 0.752 0.059 0.636 0.868

3 0.734 0.059 0.590 0.849 0.731 0.057 0.619 0.843

4 0.692 0.052 0.581 0.761 0.689 0.052 0.587 0.791

5 0.656 0.066 0.511 0.777 0.647 0.066 0.518 0.776

6 0.657 0.044 0.571 0.753 0.647 0.053 0.543 0.751

7 0.682 0.061 0.560 0.789 0.685 0.060 0.567 0.803

8 0.630 0.055 0.522 0.738 0.646 0.064 0.521 0.771

Notes:

*
Test of equal kappa values, p = 0.8; A kappa value ranging from 0.2 to 0.4 indicates fair agreement, 0.4 to 0.6 means moderate agreement, 0.6 to 

0.8 means good agreement, and greater than 0.8 means excellent agreement [24].
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Table 5

Extended kappa statistics assessing agreement for tenderness.

Injection Two-stage logistic U-statistic
*

Kappa SE 95% CI Kappa SE 95% CI

1 0.58 0.048 0.49 0.662 0.582 0.048 0.488 0.676

2 0.667 0.043 0.591 0.757 0.671 0.052 0.569 0.773

3 0.523 0.05 0.425 0.61 0.532 0.052 0.43 0.634

4 0.579 0.046 0.49 0.667 0.591 0.049 0.495 0.687

5 0.645 0.055 0.517 0.734 0.649 0.054 0.543 0.755

6 0.615 0.051 0.521 0.7 0.619 0.053 0.515 0.723

7 0.584 0.053 0.462 0.668 0.627 0.059 0.511 0.743

8 0.549 0.056 0.459 0.659 0.578 0.056 0.654 0.872

Note:

*
Test of equal kappa values, p = 0.7.
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Table 6

Assessing the overall agreement of redness between patients’ diaries and their in-clinic visits with ICC, CCC 

based on U-statistics and variance components.

Methods Correlation structure Estimate SE 95% CI

ICC CS 0.6861 0.0140 0.6577 0.7126

ICC Autoregressive (1) (AR(1)) 0.6862 0.0140 0.6578 0.7127

CCC_U, weight 1* NA 0.6942 0.0213 0.6497 0.7339

CCC_U, weight 2** NA 0.7090 0.0227 0.6614 0.7510

CCC_VC, weight 1 CS 0.6863 0.0140 0.6579 0.7127

CCC_VC, weight 1 AR(1) 0.6861 0.0140 0.6577 0.7126

CCC_VC, weight 2 CS 0.6870 0.0140 0.6587 0.7134

CCC_VC, weight 2 AR(1) 0.6869 0.0140 0.6585 0.7133

Notes:

*
Weight 1 = (0.98, 0.95, 0.95, 0.91, 0.90, 0.89, 0.82, 0.77);

**
Weight 2 = (8, 7, 6, 5, 4, 3, 2, 1).
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Table 7

Assessing the overall agreement of tenderness between patients’ diaries and their in-clinic visits with ICC, 

CCC based on U-statistics and variance components.

Methods Correlation structure Estimate SE 95% CI

ICC CS 0.5943 0.0162 0.5616 0.6251

ICC Autoregressive (1) (AR(1)) 0.5937 0.0163 0.5609 0.6247

CCC_U, weight 1* NA 0.6285 0.0138 0.6006 0.6549

CCC_U, weight 2** NA 0.6360 0.0143 0.6069 0.6634

CCC_VC, weight 1 CS 0.6863 0.0140 0.6579 0.7127

CCC_VC, weight 1 AR(1) 0.6861 0.0140 0.6577 0.7126

CCC_VC, weight 2 CS 0.5937 0.0163 0.5609 0.6247

CCC_VC, weight 2 AR(1) 0.5943 0.0162 0.5615 0.6252

Notes:

*
Weight 1 = (0.98, 0.95, 0.95, 0.91, 0.90, 0.89, 0.82, 0.77);

**
Weight 2 = (8, 7, 6, 5, 4, 3, 2, 1).
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Table 8

Comparison of six methods on assessing agreement of longitudinal binary data.

Methods Summary Main characteristics Recommendations for use

[1] Agreement proportion Logistic regression 
with GEE approach is 
used to estimate the 
crude agreement 
proportion.

(1) Covariates are allowed.
(2) MCAR missing scheme is assumed.
(3) Probability of agreement is estimated 
in a semi-parametric model.

Because the agreement proportion does 
not adjust for chance agreement as in 
kappa, it is only recommended for a crude 
agreement assessment.

[2] Kappa by two-stage 
logistic regression

It is the extension of 
estimating the 
agreement proportion. 
In the first step, chance 
agreement is estimated, 
and it is included as an 
offset in the second 
step.

(1) Kappa is estimated at each time 
point.
(2) Covariates are allowed.
(3) MCAR is assumed.
(4) Observer specific and marginal 
agreement proportions are estimated in 
semi-parametric models.

To be used in order to calculate kappa 
with covariates for repeated 
measurements.

[3] Kappa U-statistic It estimates kappa for 
longitudinal binary 
data with U-statistic, 
which is a 
nonparametric 
approach.

(1) Kappa is estimated at each time 
point.
(2) The equality of kappa at different 
time points can be tested.
(3) This approach allows MAR missing 
scheme and monotone missing patterns.
(4) No covariates are allowed.
(5) Nonparametric model assumed.

Preferred method for estimating kappa 
from repeated measurements for its 
robustness compared to method [2], if we 
are not interested in including any 
covariates.

[4] ICC It estimates ICC 
through a linear mixed 
model which estimates 
the variance 
components ignoring 
the binary nature of the 
data.

(1) Aggregate agreement measure over 
all time points is generated.
(2) Identity link is used for binary 
outcome.
(3) All time points are equally weighted.
(4) MAR missing scheme is allowed.
(5) Covariates are allowed.
(6) Full parametric model estimated via 
maximum likelihood paradigm.

It works well, when we do not have 
extreme proportions for binary outcomes, 
and all time points are considered to be 
equally important. Furthermore, it is easy 
to extend to the scenario with multiple 
raters.

[5] CCC U It estimates CCC 
through U-statistics.

(1) Aggregate agreement measurements 
over all time points.
(2) Different weights can be assigned to 
different time points according to 
importance.
(3) No missing data are allowed.
(4) No covariates are allowed.
(5) Nonparametric model assumed.

It is preferred over ICC, because the 
inference is based on the robust 
nonparametric approach. But similar to 
ICC, only aggregate agreement estimate is 
given, and no information on each time 
point is available. Furthermore, the 
approach cannot handle any missing data 
or unbalanced design.

[6] CCC variance 
components

It estimates CCC 
through a linear mixed 
model which estimates 
the variance 
components ignoring 
the binary nature of the 
data.

(1) Aggregate agreement measurements 
over all time points.
(2) Different weights can be assigned to 
different time points based on 
importance.
(3) MAR missing scheme is allowed.
(4) Covariates are allowed.
(5) Full parametric model estimated via 
maximum likelihood paradigm.

It works well when we do not have 
extreme proportions for binary outcomes, 
and it is easy to extend the scenario to 
multiple raters.
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